Registry **No.** la, 621-22-1; 4, 18810-34-5; **5,** 26243-62-9; **6,** 18810-35-6; 7,18810-36-1; 8, 78810-37-8.

Table I. Complexation **of** 9-BBN with Basic Solvents

^a Chemical shifts are reported in parts per million with $BF_{3} \cdot O(CH_{2}CH_{3})_{2}$ ($\delta = 0.00$ ppm) as an external standard. Absorbances due to dimeric 9-BBN were observed at 28 ppm for the first two entries. The percent complexation was calculated from the relative eak areas from complexed vs. dimeric 9-BBN. b CDCl₃ was used as solvent in this case. Excess pyridine showed no measurable effect on the chemical shift of the boron resonance.

Table **11. Molar** Solubility of Dimeric 9-BBN in Representative Solvents^a

	temperature	
solvent	0 °C	25 °C
monoglyme	0.01	0.07
diglyme	< 0.01	0.04
1.4-dioxane	0.03 ^b	0.07
1.3-dioxolane	0.01	0.04 ^c
diethyl ether	0.09	0.18
tetrahydrofuran	0.12	0.29
dichloromethane	0.11	0.28
chloroform	0.21	0.50
carbon tetrachloride	0.15	0.36
pentane	0.13	0.23
hexane	0.11	0.25
benzene	0.19 ^d	0.36
cyclohexane	0.03 ^e	0.08
toluene	0.14	0.33
dimethyl sulfide		0.60

^{*a*} Values determined by hydride analysis.¹⁴ ^{*b*} 15 °C. ^c Some chemical change in 9-BBN was observed in this solvent. ^d 4.4 °C. ^e 7 °C. ^f Value taken from ref 1.

of the crystalline product actually obtained. For one, the choice of BH_3 .THF as the reagent used for the initial hydroboration necessarily requires that THF be used as the reaction solvent. However, 9-BBN is significantly soluble in this medium, presumably due, at least in part, to the presence of an equilibrium concentration (ca. 14%) (see Table I) of a 9-BBN-THF complex **(2).** on necessarily requires that THI
solvent. However, 9-BBN is is
is medium, presumably due, at l
ce of an equilibrium concentration
of a 9-BBN-THF complex (2).
(9-BBN)₂ $\frac{THF}{2}$ 29-BBN-THF
1

$$
(\text{9-BBN})_2 \xrightarrow{\text{THF}} 2 \text{ 9-BBN} \cdot \text{THF}
$$

Further, the microcrystalline product **(1)** obtained from THF solvent occasionally contains minor **amounts** of impurities which render the material pyrophoric.

Studies on the hydroboration of 1,5-cyclooctadiene using borane-methyl sulfide complex had revealed that this reagent could be used to prepare solutions of 9-BBN in solvents other than $THF.6$ Of such solvents, the relatively low solubility of 9-BBN in diglyme' suggested that polyoxygenated ethers might provide an ideal reaction solvent to obtain the desired crystalline material.

The solubility of 9-BBN was measured in various solvents at 0 and **25** "C, and these results are summarized in Table 11.

After investigating several solvent systems we found that monoglyme provided a superior reaction medium in that large crystals of 9-BBN dimer could be obtained in excellent yield (88%) and high purity (mp 153-155 **"C).** The high-purity crystalline 9-BBN dimer obtained from re-

A Simple, Remarkably Efficient Route **to** High Purity, Crystalline **9-Borabicyclo[3.3.1]nonane (9-BBN)** Dimer

John. A. Soderquist

Department of Chemistry, University of San Francisco, San Francisco, California 941 17

Herbert C. Brown*

Richard B. *Wetherill Laboratory, Purdue University, West Lafayette, Indiana 47907*

Received June 24, I981

9-Borabicyclo[3.3.1]nonane (9-BBN) is a stable, crystalline dialkylborane, which, owing to its remarkable selectivity, has found wide application in organic synthesis.¹ We report a new, highly efficient preparation of crystalline 9-BBN dimer in high yield and purity from the cyclic hydroboration of 1,5-cyclooctadiene with borane-methyl sulfide complex, using 1,2-dimethoxyethane (monoglyme) **as** the reaction solvent. The product obtained under these conditions is resistant to decomposition in air and is indefinitely stable under a nitrogen atmosphere at room temperature. This development also makes possible the purification of 9-BBN from commercial and other sources to give a high purity, stable product.

First isolated and characterized by Köster,² 9-BBN

dimer (1) was obtained from the thermal redistribution

of *B-n*-propyl-9-BBN.
 $2n$ -Pr-B₂) + n -Pr₄B₂H₂ -dimer (1) was obtained from the thermal redistribution of B-n-propyl-9-BBN.

$$
2n-Pr-B\bigvee P+ n-Pr_4B_2H_2 \longrightarrow
$$
\n
$$
B\bigvee H \longrightarrow B \bigvee H \longrightarrow C \bigveight H \longrightarrow C \bigveight
$$

However, since the preparation of the B-alkyl-9-BBN derivative was itself a two-step process,³ a more attractive route to 9-BBN was found by Knights and Brown, involving the cyclic hydroboration of 1,5-cyclooctadiene with borane-tetrahydrofuran complex.⁴ I was found
c hydroboration
drofuran con

$$
\begin{pmatrix}\n\text{BH}_3 \cdot \text{THF} & \text{65 °C} \\
\hline\n0 \cdot \text{C} & \text{1 h}\n\end{pmatrix}
$$

A 7030 mixture of the isomeric 9-borabicyclo[3.3.1]- and [4.2.l]nonanes were formed in the initial cyclic hydroboration step. However, simply heating the mixture at reflux temperature effected equilibration of the boranes to give 1 exclusively. This procedure gives a microcrystalline product of mp 142 °C in ca. 65% yield. Further purification of this material by vacuum sublimation increases the melting point to 152-155 **0C.5**

While **this** approach **is** a particularly convenient method for the preparation of 9-BBN, it suffers from several practical difficulties which diminish the yield and purity

⁽⁶⁾ Brown, H. C.; Mandal, A. K.; Kulkami, S. U. J. *Org. Chem.* 1977, *42.* 1392.

⁽¹⁾ Brown, H. C.; Lane, C. F. Heterocycles 1977, 7, 453.
(2) Köster, R. Angew. Chem. 1960, 72, 626.
(3) Köster, R.; Griaznov, G. Angew. Chem. 1961, 73, 171.
(4) Knights, E. F.; Brown, H. C. J. Am. Chem. Soc. 1968, 90, 5281

^{1974,96, 7765.}

crystallization from monoglyme solvent has already found a number of useful applications in organic chemistry. These applications include the regiospecific, quantitative hydroboration of alkenylsilanes,⁷ the preparation of molecular addition compounds? detailed kinetic studies on the hydroboration reaction⁹ as well as provide the basis for the commercial preparation of the reagent.¹⁰

Thus with this new route to high-purity 9-BBN dimer the fascinating chemistry of this most remarkable reagent can be more conveniently and efficiently explored.

Experimental Section

All manipulations were carried out under a nitrogen atmosphere, using oven-dried glassware (4 h, at 110 °C). Monoglyme and 1,5-cyclooctadiene were distilled from lithium aluminum hydride prior to use. Borane-methyl sulfide complex (Aldrich-Boranes) was used without prior purification. The ¹¹B NMR spectra were obtained on a Varian FT-80A instrument.

9-Borabicyclo[3.3.1]nonane (1). A 2-L round-bottom **flask** containing a magnetic stirring bar and surmounted by an addition funnel and a distillation assembly was charged, under a nitrogen atmmphere, with 1.2-dimethoxyethane (monoglyme, *500* **mL)** and borane-methyl sulfide complex (153 mL, 1.53 mol), using a double-ended needle. The addition funnel was similarly charged with 1,5-cyclooctadiene (164 g, 1.52 mol). To the stirred borane solution 1,5-COD was added dropwise over ca. 1 h (reaction temperature, **50-60** "C) during which time, dimethyl sulfide (bp 38 °C) distills slowly from the reaction mixture. After the addition was complete, approximately 300 **mL** of the solution was distilled to reach a distillation temperature of 83-85 "C, which indicated the removal of the dimethyl sulfide from the reaction mixture.¹¹ The distillation assembly was replaced with a rubber septum and monoglyme was added to bring the volume to ca. 1 L. The mixture monoglyme was added to bring the volume to *ca*. 1 L. The mixture was allowed to cool slowly to 0 °C, which results in the formation of crystalline (needles) 9-BBN.¹² The supernatant liquid was decanted with a double-ended needle and the residue was dissolved in fresh monoglyme (1 L). After cooling slowly to $0^{\circ}C$, the supernatant liquid was removed as above, and the large needles supernatant liquid was removed as above, and the large needles were dried in vacuo *(60* °C for 16 h, at 100 µmHg) to give 162 g (88%) of product mp 153-155 °C, sealed capillary).¹³

Solubility Determination. With purified reagent-grade solvents, saturated solutions of 9-BBN dimer were allowed to equilibrate for several hours in a constant temperature bath. Aliquots were hydrolyzed in a 50:50 methanol-tetrahydrofuran mixture, and the hydride molarity was determined from the corrected volume of hydrogen evolved.¹⁴ The values so determined for dimeric 9-BBN are presented in Table 11.

Acknowledgment. The financial support of the National Science Foundation, CHE-7918881, is gratefully acknowledged.

Registry **No. 1,** 21205-91-4; borane methyl sulfide, 13292-87-0; 1,5-cyclooctadiene, 111-78-4; 9-BBN-THF, 76422-63-4; 9-BBN-S- $(CH₃)₂$, 64045-91-6; 9-BBN $NC₅H₅$, 64045-95-0.

- (7) (a) Soderquist, J. A.; Hassner, A. J. Organomet. Chem. 1978, 156,
- C12. (b) Soderquist, J. A.; Brown, H. C. J. Org. Chem. 1980, 45, 3571.

(8) (a) Brown, H. C.; Soderquist, J. A. J. Org. Chem. 1980, 45, 3571.

(9) Brown, H. C.; Wang, K. K. *Ibid.* 1980, 45, 1748.

(9) Brown, H. C.; Wang,
- -
- (11) **Failure** to remove the dimethyl sulfide lowers the overall yield to *ca.* **65%.** The high solubility 9-BBN in dimethyl sulfide (see Table II), which is likely to be due to the formation of 9-BBN-SMe₂ (see Table I), probably accounts for this yield diminution.
- (12) **These crystals can be dried as described to give 91% of product (mp 152-154 °C).**
- **(13)** The 9-BBN *80* prepared is reasonably air stable **so** that exposure to the atmosphere for 1 month lowered the melting point to 146–151 °C.
We were unable to detect any significant (<2%) loss of hydride activity We were unable to detect any significant $($ <2%) loss of hydride activity or selectivity for the exposed sample.

(14) Brown, H. C.; Kramer, G. W.; Levy, A. B.; Midland, M. M.

"Organic Syntheses via Boranes"; Wiley-Interscience: New York, 1975.

1-Substituted Benzocyclobutenes via Parham Cyclial **k** ylation'

Charles K. Bradsher* and Kevin J. Edgar

Paul M. *Gross Chemical Laboratory, Duke University, Durham, North Carolina 27706*

Received February 17, 1981

The discovery that certain 1-substituted benzocyclobutenes can undergo intramolecular cycloaddition through isomerization to a derivative of o-quinodimethane was one of the important synthetic advances of the past decade.² While such cycloadditions frequently occur stereospecifically and in excellent yield, the preparation of the desired 1-substituted benzocyclobutenes **(4) has** frequently been less satisfactory. Of the many² available, the most versatile preparative scheme for 4 has involved a Bunnett³ cyclization of an o-halodihydrocinnamonitrile $(1 \rightarrow 2,$ Scheme I) followed either by elaboration of the nitrile group^{4,5} or by alkylation^{6,7} at the tertiary carbon α to it (2 \rightarrow 3) with subsequent reductive decyanation (3 \rightarrow 4).

The purpose of the present preliminary investigation **was** to determine whether the Parham cyclialkylation $8-10$ reaction might offer a useful alternate route to 1-substituted benzocyclobutenes. For the preparation of the requisite model dihalides 8, $(2\textrm{-}b$ romophenyl)acetonitrile $(5)^{11}$ appeared to be a convenient starting material, since it was known that at -100 °C it reacts with butyllithium selectively by hydrogen-lithium exchange.¹¹ Further, Kaiser and Hauser¹² had shown that the anion derived from phenylacetonitrile in essentially this way could be monoalkylated in good yield.13 Good results were obtained in the alkylation of 5 $(75-92\%)$ by using benzyl bromide, 1-bromobutane, or 5-bromo-1-butene.

The usual route from (2-bromopheny1)acetonitrile **(5)** to 2-(o-bromophenyl)ethanol $(7, R = H)$ is via hydrolysis of the nitrile to the (2-bromopheny1)acetic acid, followed by reduction.16 The alkylated nitriles **6** proved so difficult to hydrolyze that it was found more effective to reduce

- **(2)** Oppolzer, W. Synthesis 1978, 793. (3) Bunnett, J. F.; Skorcz, J. A. J. *Org.* Chem. 1962,27, 3836. (4) Kametani, T.; Ogaeawara, K.; Takahashi, T. *Tetrahedron* 1973,29,
- *⁷²*. -. (5) Kametani, T.; Nemoto, H.; Fukumoto, K. J. Chem. **SOC.,** Chem.
- *Conmun.* 1976,400.

(6) (a) Kametani, T.; Nemoto, H.; Ishikawa, H.; Shiroyama, K.; Matsumoto, H.; Fukumoto, K. *J. Am.* Chem. *SOC.* 1977, 99, 3461. (b) Kametani, T.; Hirari, **y.;** Shiratori, y.; Fukumoto, K.; Satoh, F. J. Am. *Chem.* **SOC.** 1978,100,554.

(7) Since completion of **our** work others (Nicolaou, K. C.; Bamett, W. E.; Ma, P. J. Org. Chem. 1980, 45, 1463) have described a route to mo-
noalkyated *o*-quinodimethanes via monoalkylation of 1,3-dihydrobenzo-[clthiophene 2,2-dioxide, followed by pyrolysis. The Nicolaou method depends for ita utility upon the equivalence of the positions being **al**kylated (1 and 3) in the sulfone ring and thus is restricted, effectively, to examples in which the benzo ring has no (or symmetrically positioned) substituents.

(8) Parham, W. E.; Jones, L. D.; Sayed, Y. A. *J. Org. Chem.* 1976,41, 1184.

(9) Brewer, P. D.; Tagat, J.; Hergrueter, C. A.; Helquist, P. *Tetrahe-*

- dron Lett. 1977, 4373.

(10) Bradsher, C. K.; Hunt, D. A. Org. Prep. Proced. Int. 1978, 10, 267.

(11) Parham, W. E.; Jones, L. D. J. Org. Chem. 1976, 41, 1187.

(12) Kaiser, E. M.; Hauser, C. R. J. Am. Chem. Soc. 1966, 88
	-

(13) In addition there was evidence that suggested that ortho-substituted phenylacetonitriles¹⁴ are monoalkylated in higher yield than is phenylacetonitrile.¹⁶

- (14) Bradsher. C. K.: Jackson, W. J., Jr. *J. Am. Chem.* SOC. 1961, 73, 3235. '
- 30, 4135. (15) Kenyon, W. G.; Kaiser, E. M.; Hauser, C. R. J. *Org. Chem.* 1966,
- 1964, 84, 458. *(16)* Uyeo, S.; Mizutani, T.; Yoshitake, A.; Ito, A. *Yakugaku Zasshi*

0022-3263/81/1946-4600\$01.25/0 *0* 1981 American Chemical Society

⁽¹⁾ This research was **assisted** by a Biomedical Sciences Support Grant and by a grant from the Duke University Research Council.